
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

i

A Novel Framework for Mobile Edge Computing
By Optimizing Task Offloading

Naouri Abdenacer, Hangxing Wu, Nouri Nabil Abdelkader, Sahraoui Dhelim, Memeber, IEEE, and Huansheng
Ning, Senior Member, IEEE

Abstract—With the emergence of mobile computing offloading
paradigms such as Mobile Edge Computing (MEC), many IoT
applications can take advantage of the computing powers of
end devices to perform local tasks without the need to rely
on a centralized server. Computation offloading is becoming a
promising technique that helps to prolong the device’s battery life
and reduces the computing tasks’ execution time. Many previous
works have discussed task offloading to the cloud. However,
these schemes do not differentiate between types of application
tasks. It is not reasonable to offload all application tasks into
the cloud. Some application tasks with low computing and high
communication cost are more suitable to be executed on the end
devices. On the other hand, most resources on the end devices
are idle and can be used to process tasks with low computing
and high communication cost. In this paper, a three-layer task
offloading framework named DCC is proposed, which consists of
the device layer, cloudlet layer and cloud layer. In DCC, the tasks
with high computing requirement are offloaded to the cloudlet
layer and cloud layer. Whereas tasks with low computing and
high communication cost are executed on the device layer, hence
DCC avoids transmitting large amount of data to the cloud, and
can effectively reduce the processing delay. We have introduced a
greedy task graph partition offloading algorithm, where the tasks
scheduling process is assisted according to the device computing
capabilities following a greedy optimization approach to minimize
the tasks communication cost. To show the effectiveness of the
proposed framework, We have implemented a facial recognition
system as use case scenario. Furthermore, experiment and simu-
lation results show that DCC can achieve high performance when
compared to state-of-the-art computational offloading techniques.

Index Terms—Computation offloading, Cloud computing,
Cloudlet computing, Dynamic mobile cloudlet, Cluster formation,
Communication tasks.

I. Introduction

W ITH the tremendous growth of the Internet of Things
(IoT), the number of objects connected to the IoT

network is in the scale of billions. Most of mega cities around
the world such as Beĳing and New York have recently been
equipped with thousands of smart objects, including cameras,
sensors and actuators. These objects sense the environment
and react to a real-time situation by gathering data from
different sources, which requires sending a huge amount of
data continuously. Analyzing such tremendous generated data,

Naouri Abdenacer, Hangxing Wu, Sahraoui Dhelim and Huansheng Ning
are with the University of Science and Technology Beĳing, Beĳing 100083,
China

Naouri Abdenacer, Hangxing Wu, Sahraoui Dhelim and Huansheng Ning
are also with Beĳing Engineering Research Center for Cyberspace Data
Analysis and Applications, Beĳing, China

Nouri Nabil Abdelkader is with the University of Djelfa, Algeria
Corresponding author: Huansheng Ning (ninghuansheng@ustb.edu.cn).

such as the video streams from smart cameras, or augmented
reality, and facial recognition data in IoT applications requires
a high computing resource that can be empowered by the
Cloud Computing [1]. Cloud Computing can be described
as a remote data center consisting of a collection of super
computing nodes that share resources with each other forming
intensive resource computing associated with smart manage-
ment software such as a software-defined network (SDN). The
devices that are unable to complete computing tasks locally,
offload their computing task to the cloud. However, due to
the large gap between the cloud and end devices, the network
could suffers from connectivity delay which is not suitable
for latency sensitive real-time applications, in addition to the
back traffic weight that could overload the network. In order
to reduce the network delays and the massive resulting traffic
through the network, Edge Computing (EC) [2] was suggested
as a solution to solve those issues where it enables computing
at the edge of the network. However, shifting the computation
from the cloud to the edge requires intelligent supervision.
Furthermore, researchers suggested Mobile Edge Computing
(MEC) in [3], which is considered to be a variant form of EC
adapted to mobile networks.
Some MEC architectures and offloading strategies have been

investigated in [4–8] for remote task computing, which deals
separately with different minimizing or maximizing objectives,
such as minimizing the energy consumption or the execution
delay or maximizing the offloaded tasks ratio or the system
profit within computing devices or the fog nodes [7, 8]. In
[9] authors target the execution time within IoT devices, and
introduced a fully polynomial-time approximation scheme to
reduce the application tasks execution delay. Also, authors in
[10, 11] have proposed femtocloud system which provides a
dynamic, self-configuring, and multi-device mobile cloud out
of a cluster of mobile devices. Moreover, authors in [11] iden-
tify an optimal scheduling decision for a mobile application
comprising of dependent tasks, such that the communication
and execution cost is minimized subject to an application
deadline. However, most of these works did not consider the
application task dependency and the communication burden,
the IoT devices at the edge do not differentiate applications
tasks and offloaded the entire applications tasks to the cloud
using traditional offloading strategies, which cause a large
volume of data to be transmitted, and subsequently network
congestion.
In fact, offloading tasks to the cloud can be reasonable

when the edge or fog computing nodes cannot fulfill the
application needs. The high computing requests demands may

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

ii

exceed the capability of the nodes because of their insufficient
resources. While offloading tasks with low computing and high
communication cost to the cloud is not reasonable, due to
the unstable devices connection with the cloud and the long
distance between devices and cloud. It is better to process these
tasks locally within the edge and nearby devices to reduce
the communication traffic and execution time. Furthermore,
there are still some problems that have not been addressed
in the previous works. Firstly, the resources on the edge may
not fulfill all user’s requests due to the enormous offloading
tasks. Secondly, the mobility of mobile devices still stands as
a barrier to achieve efficient offloading. Thirdly, choosing the
suitable task execution location remains a challenge. In order
to solve all these problems mentioned above, we proposed a
three-tier MEC architecture as shown in Fig. 1, which consists
of device layer, cloudlet layer, and cloud layer (DCC).

Based on the observation that a large number of computing
resources in the local devices are idle in practice, a large
number of high communication tasks can be handled locally
if these idle computing resources can be utilized. As a result,
the processing delay of these tasks can be reduced, and we
avoid sending large amounts of data to the cloud. Therefore,
a device layer in DCC is defined by forming dynamic mobile
cloudlet devices in the same area. The advantages of DCC are
as follows. Firstly, high communication tasks in DCC can be
handled locally within the nearby computing nodes, and high
computing tasks can be sent to the cloud. Secondly, a mobile
device jointly form a cloudlet, which will make its link to
the cloud more reliable. Thirdly, some tasks will be processed
locally which will ease the pressure on the cloud. Finally, a
suitable task execution location can be chosen by adopting an
optimal scheme in DCC.

Our contributions can be summarized as follows:
1) Proposed a novel a three-layer task offloading framework

named DCC, which consists of the device layer, cloudlet
layer and cloud layer.

2) Proposed a greedy task graph partition offloading al-
gorithm, where the tasks scheduling process is assisted
according to the device computing capabilities following
a greedy optimization approach to minimize the tasks
communication cost.

3) Implemented a facial recognition system based on the
proposed framework as use case scenario.

The remainder of this paper is organized as follows. Section
II discusses previous related works. Section III describes the
application model used for computing and offloading tasks
with the proposed architecture and outlines the proposed
resource allocation and task partition algorithms. Section IV
analyses the partition algorithm’s performance and the exper-
iment results. Finally, we conclude the paper in Section V.

II. Related Work

Recently, offloading computing shown a wide application
in several domains in IoT, with different architectures and
different policies, where application tasks executed remotely
on other devices due to insufficient device resources, re-
garding the application execution time and devices energy.
Different works have been explored this area and different

Fig. 1: DCC Computing Architecture

static and dynamic offloading frameworks and architectures
were proposed. In [12, 13] authors introduced CloneCloud
and MAUI frameworks that aim to improve battery life and
device performance by offloading application components to
cloud servers. Both targeting one server for offloading. In
CloneCloud, tasks executed in a cloned image of the system
of the device, it combines a static program analysis with a
profiling program to select the offloaded components. In MAUI
tasks executed based on methods annotation and static program
analysis. However, a single server may not have enough com-
munication and computing resources. In these cases, and in
other situations, where there are significant latency limitations,
frameworks with concurrent offloading on multiple servers
have been suggested for task distribution among a cluster of
servers with specific processing and communication capabili-
ties. In [14] a framework named ThinkAir has been proposed
to fix the drawbacks of two previous mentioned frameworks. In
particular, ThinkAir use being used with new ways for resource
management and simultaneous task execution. It focuses on
the cloud’s elasticity and scalability and improves the capacity
of mobile cloud computing by using several virtual machine
(VM) images for parallel process execution.
Concerning the offloading process, authors in [15–17] pro-

posed several strategies. Most concentrate on independent task
scheduling and concentrate on single metrics, such as energy
or execution application time. In [16] the authors studied
the task scheduling problem to reduce energy consumption,
by assuming that the cloud and the mobile devices can
not run simultaneously. While exploiting parallelism between
the cloud and the mobile devices can quickly improve the

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

iii

application execution time. For instance, a heuristics [18]
and genetic algorithms [19] introduced to reduce the appli-
cation tasks execution time respecting task execution order.
Authors in [11] target the device’s energy where propose a
task allocation strategy for heterogeneous devices and mobile
cloud. Furthermore, offloading computing of dependent tasks
have been discussed in [9, 11]. In [9], the authors target the
reduction of execution time by introducing a fully polynomial-
time approximation scheme to reduce the overall latency while
offloading dependent tasks to multiple devices. In [20], authors
suggested deterministic and probabilistic delay constrained
task partitioning algorithms to optimize the total of remote
computational cost and mobile energy usage of all application
tasks with delay constraints in polynomial time, where tasks
are structured in form of a tree for sake of simplicity. However,
both [21] and [20] assumed that the devices have infinite
capacity. In contrast, our proposed task dependency offloading
model regards the device constraint resource where it can serve
more than one user and perform more than one task according
to the device’s ability.

III. System Architecture Model and Problem
Formulation

Cloud computing offers easy accessibility and cooperation,
but cloud centralization could expose it to a bottleneck prob-
lem due to the massive network traffic generated by the user’s
offloading requests. Also, adding a delay to the network, due
to the large gap between the users and the cloud resources.
For example, a self-driving car, it is critical to have the
shortest possible time from collecting data through sensors
to making a decision and then acting on it. Hence enabling
computing at the network edge by placing computing resources
within the edge network can improve the time response system.
Although the advantages brought by the edge, the resource
limitation remains challenging. For that, we introduced a DCC
architecture, where consists of different layers collaborate with
each other to mitigate the network burden as much as possible
and increase the system performance.

Fig. 1 presents our proposed architecture where it consists
of 3 tiers: a device layer, cloudlet layer, and cloud layer(DCC).
The device layer consists of a set of heterogeneous devices,
the cloudlet layer consists of a set of computing resources
provided close to the user in the form of servers, and the last
tier represents the cloud servers. Usually, edge devices play a
limited role in sending data and information to and receiving
processed information from the cloud. In our case, we explore
the idle edge device resource for executing tasks to reduce
the traffic of the network backbone and the response time.
This requires a smart offloading task policy to explore the
edge devices resource efficiently. Some offloading computing
policies have been proposed regarding the energy and device
computation cost. However, these policies assign the offloading
tasks directly to the fog or to the cloud without considering
the communication cost. This motivates us to investigate on
offloading policy to reduce the communication and compu-
tation cost in an efficient manner within our proposed DCC
architecture.

Allowing communication between devices can alleviate the

communication burden at the edge network, where tasks are
executed locally within devices instead of sent to cloudlet
or cloud servers. Let N is the number of computing nodes
and M is the number of computing tasks to be assigned.
Our objective is to provide an optimal collaboration strategy
regarding the communication cost, focusing on delegating the
M computational correlated tasks to the appropriate computing
nodes. In addition, the device location on the network can
affect the task execution process due to their mobility, hence a
management process required to avoid task execution failure.
A. An Overview of DCC
The DCC computing system provides a computing resource

at different levels, where users can use it. When a user initiates
its offloading process, the application tasks distinguished into
different types, where each task will offload to the correspond-
ing computing node according to its feature and the node
ability. Application remote tasks can be classified into two
main types, tasks with high computing and low communication
(computation tasks) which are suitable to be offloaded to the
cloud, and tasks with low computing and high communication
(communication tasks) that are preferable to be executed at
the nearby computing devices whether in device layer or edge
layer. Fig. 2 illustrates different cases for the offloading process
within the DCC system. As we can see in Case 1: User A
initiates the offloading process where is starting by offloading
communication tasks within its nearby computing nodes in the
corresponding cluster. The communication tasks that cannot
be handled inter-cluster, it is offloaded to neighboring clusters
through the edge node as shown in Case 2. In Case 3:
Computation tasks offloaded toward the edge nodes due to
their high computation resource needs. Case 4: reflect on the
tasks that cannot be performed in the current edge node due
to the edge node resource limitation which is preferable to
offloaded towards the neighboring edge nodes.
B. Dynamic Cloudlet Formation
The creation of mobile cloudlets in form of clusters helps to

reduce energy consumption during the task offloading process,
especially when considering scalability and robustness [22].
As a result, when the device’s arrangement is suitably adjusted,
the network life duration period is prolonged (without the need
to replace the nodes’ batteries). Centralized and distributed
cluster formation approaches have been proposed in the liter-
ature [23]. Each one has advantages and disadvantages, where
relying on the centralized approach provides an optimal bound
over the distributed schemes, while the distributed approach
shown is resistant to network topology changes but consumes
significant edge devices energy which is critical. In contrast,
the centralized approach is not scalable but it consumes low
energy. However, we relied on the centralized approach where
two important issues related to the clustering process for task
offloading should be addressed. The first one: which are the
suitable cluster nodes for current task execution according
to task features (i.e. Soft and Hard deadline)?. The second
one: where should tasks be executed for optimal execution
"INTER/INTRA Cluster"?. Note that users can perform similar
tasks giving the same outcome. Therefore, allowing caching
among clusters can improve the application response time.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

iv

Fig. 2: Different Offloading Cases Through The DCC

Fig. 3: Dynamic Cloudlet Formation Using K-mean Clustering
Algorithm

The cloudlet formation is the process of finding the most
adequate clustering method of intermediate servers. Cloudlet
formation has been explored in previous works in different
area with different networks. K-means algorithm introduced
in [24] which is one of the common algorithms used for the
clustering process. This algorithm partitions data set into K
clusters using the mean euclidean distance. We adjusted the K-
mean algorithm to fit our task offloading computing scenario
where the cluster head (CH) responsible for task offloading
outside the cluster (i.e. offload tasks toward the edge server),
and cluster members (CM) receive and send their tasks among
each other and toward the CH. In order to prolong the cluster
lifetime and to shield the network from the results drawbacks
due to the CH mobility, each node in the cluster can act
as a CH when the current CH is out of service or under a
certain threshold. In addition, the K-mean clustering algorithm
strongly depends on the initial centroids, where inappropriate
centroids distribution can leads to low performance. Hence, In
order to ensure an effective cluster formation, we determine
the initial K cluster centroids based on nodes locations, the
formulation is presented as follows:

(A) Define initial centroids: Fig. 3
1) First, we define an initial centroid �4=C4A 9 for all

network nodes N, where -8 refers to the location of

nodes in the network.

�4=C4A 9 =

∑#
8=1 -8

#
(1)

2) Second, Select next centroids according to the initial
centroid �4=C4A 9 edges (-max, max) in such way that
the euclidean distance maximized.

3) After determining the initial K centroids, the eligible
nodes will join to the corresponding cluster with the
nearest centroid �4=C4A 9 using the following function:

:∑
9=1

=∑
8=1

G (9)8 − �4=C4A 92 (2)

To this end, the K numbers of the cluster centers are
designated in such a way that the limitation of the basic
algorithm such as the inappropriate distribution of the nodes
have been covered.
In order to select the appropriate computing nodes that will

serves as CHs, the corresponding cloudlet server calculate the
energy residual and computing capacity of each cluster S, (=
[(1, (2, , (:]

1) Calculate the average node computing energy of each
cluster.

4avg ((8 (9)) =
∑ |(8 (9) |
9=1 4(9)r
|(8 (9) |

∀ 9 ∈ 1, 2 . . . , |(8 | (3)

where 4(9)r and 4avg ((8 (9)) are the residual energy of
the 9Cℎ member node and the average cluster energy of
(8 ,respectively.

2) Calculate the average node computing capacity of each
cluster.

2avg ((8 (9)) =
Σ
|(8 (9) |
j=1 2(9)r
|(8 (9) |

∀ 9 ∈ 1, 2 . . . , |(8 | (4)

3) After determining the computation and energy averages,
the potential clusters head nodes are expressed as fol-

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

v

Fig. 4: User Mobility Model

lows:

��
(
2 9 , 4 9

)
=

{
Max(9) if 2 9 > 20E6 and 4 9 > 40E6
0 otherwise

(5)
C. User Mobility Offloading Model

Note that the offloading decision is affected by nodes
mobility. For this reason, we assigned to each user a random
way-point mobility (RWP) model as defined in [25], which
is widely used to describe nodes movement. In this model
the mobility trajectories of node i represented by TR8 =

(-8-8−1, C8 , E8). |-8 − -8−1 | reference to the crossed distance
during C8 with the variant speed E8 . Two mobile nodes can
communicate if their on the same range

��-8 (C) − - 9 (C)�� < ',
-8 (C) = {-1 (C), -2 (C) -= (C)} represents the nodes loca-
tion at instant t and R represents the transmission range as
shown in Fig. 4.
To realize a successful and efficient offloading, the commu-

nication time is regarded as the main factor to complete the
task operation. Since the relation between computing nodes
is not stable, we introduce communication time CTj (t) which
indicate the link duration time between node j and node i
within cluster (8 , represent by:

�)9 (C) = {C : Cfinish − Cstart } (6)

Cstart = inf0≤C≤g
{
C :

-8 (C) − - 9 (C) ≤ '}
Cfinish = inf0≤C≤g

{
C : ∀C ′ ≥ C ∩ C ′ ≤ g,

-8 (C ′) − - 9 (C ′) > '}
(7)

D. System Model Description
We defined a global and local middleware works as an

SDN controller to fulfill the users offloading requests at the
edge and monitoring the network and mobile devices state.
The global middleware (GMDW) work on monitoring and
redirecting the traffic through all network between the static
cloudlets nodes (SC), while the local middleware (LMDW)
focuses on managing the local explored area. Fig. 5 shows the
architecture model where all mobile devices can subscribe to
profit from the SC resources. In this architecture, users notify
their states, including location, storage capacity, energy level
and CPU to the corresponding SC. GMDW can enhance the
network throughput by offloading data to the less overloaded
servers across the network according to the user’s density
variation in different areas. LMDW can control and track users

Fig. 5: DCC Computing Model For IoT Devices

due to their mobility.
Fig. 5 displays global and local middleware (GMDW,

LMDW) components, each one associated with different com-
ponents. First, the GMDW consists of Static Cloudlet Profiler
(SCP) includes information concerning the status of super-
vised SC nodes (server load, location, processing power, etc.)
and Static Cloudlet Network Profiler (SCNP) to monitor the
network traffic over the available various SCs in the network.
While Static Cloudlet Request Resolver (SCRR) is in charge of
solving the offloaded heavy tasks. In the end, Task Offloading
Decision (TOD) is responsible for task offloading decisions
among the SCs based on the gathered information (SCs,
network states, and the offloaded requests).
Second, the LMDW consists of task and resource man-

agement components, in which all collected information is
concerning the edge devices states and the offloaded tasks.
Resource Manager involves a Resource Classifier (RC) and a
Profiler, the RC works on classifying the available resource on
the network using the Profiler metadata. While the Profiler is
responsible for monitoring the local network and device states.
In addition, the Task Manager includes a Task Classifier and
Solver. Where Task Classifier ranges the tasks according to
their features and constraints. The Solver takes responsibility
for sending and receiving the offloading request towards nodes
according to the scheduling decision. Based on the resource
and tasks information provided by the previously mentioned
components a Local Task Offloaded (LTO) offload the com-
puting tasks to the suitable devices using a partition task and
resource allocation algorithms, which will be discussed later
in the next sections taking into account the task deadline and
their dependencies also the device’s connectivity.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

vi

Fig. 6: Different Offloading Computing Strategies

E. Optimal Decision of Task Offloading
Although not all application tasks are suitable for remote

execution, binary and partial offloading strategies have been
introduced in [26–28] as shown in Fig. 6. Binary Offloading
requires a task to be executed as a whole either locally at
the device or remotely on the MEC server. Partial Offloading
allows a task to be partitioned into two parts, some executed lo-
cally and some execute remotely. In practice, binary offloading
is easier to implement and suitable for simple tasks that are not
partitionable, while partial offloading is favorable for complex
tasks that include multiple methods such as augmented reality
and face recognition applications.
1) Task Specification

We represent a task flow by an acyclic directed graph
�C=(+" , �), where +"={)1,)2,)3, . . . ,)" } represents the
set of computing tasks and E represent the communication
link between tasks. A task)8 depends on task)8−1 if there is
a edge between them. We assume that each computing node
can serve more than one task on time based on its available
resources, and can offload its computing tasks by a single hop.
Each task)8 of +" associated with following variables (F8 ,
88 , >8 , g8 , 48), where F8 represent the computation workload,
(88 , >8) represent the input and output data size, g8 represent
the task execution deadline time and 48 represent the energy.
Those parameters related to the application nature such as real-
time application e.g “recognition face and augmented reality”.
Where this type of application requires a hard deadline (i.e.
tasks execute respecting to its g8) comparing to soft deadline
application such networking apps where tasks can accept
latency with relatively small g8 . The task parameters can be
forecast or estimated based on the device profiler as mentioned
in [21, 29], which facilitates the execution process and assess
the communication cost resulting during the tasks interactions.
2) Task Classification

According to [30], the application tasks can be could be
classified according to the execution mode, tasks that can be
run locally and tasks that must be executed remotely on the
cloud, and those that can be executed on both modes. Hence,
we distinguished the application tasks into three categories
(Local, Shared, and Heavy) tasks. Local tasks refer to un-
offloadable tasks denote by)D (tasks that use local device
components such “camera, GPS, user interface“). Shared Tasks
denote by)B refers to communication tasks that require low
computation and high communication cost and can executed

on both modes, either remotely or locally based on the
device’s resources. While heavy tasks denote by)ℎ refers to
computation tasks that require a high computation and low
communication cost and can be execute remotely at the edge
within cloudlet nodes or the cloud. It was pointed out in [31],
that shared tasks constitute the majority of network traffic and
therefore, an optimum offloading regarding)B can enhance the
network performance.
3) Task offloading Computing Model
In order to ensure an efficient cooperative offloading within

the DCC system, we evaluate the energy consumption and task
execution time for local and remote task execution.
1) Local Computing the execution time and energy con-

sumption for local computation could be expressed as
follows:

) (8, 9) = l(i, j)/ 5 9 And � (8, 9) =) (i, j) ∗ % 9 (8)

Where 5 9 is the device CPU frequency and % 9 represent
the computation energy of device j for task i. l(i, j) :
represent task i workload on device j.

2) Remote Computing tasks can be executed remotely on
the edge server or remotely at neighbor devices. For
that, we discuss the communication overhead in terms of
execution time and energy consumption for both cases,
respectively:
For a task 8Cℎ executed by device j, the execution time
for both cases (at the nearby mobile device or at the edge
node), includes input data uploading, cloudlet execution,
and result downloading.

)(8) =
ln8
*
+ l8
5
+ >DC8

�
(9)

For energy cost:

4 (8) =
ln8
*
· ?B +

l8

5
· ? 9 +

>DC8

�
· ?A (10)

?B and ?A are the transmitting energy for uploading and
downloading data.

4) Cooperation Task Execution Strategy
In this subsection, we described the functioning of our

proposed offloading algorithm where it demonstrates the of-
floading phases. When a resource constraint occurs in a device,
the designed nodes offload their computing task to their
neighbor nodes within the current mobile dynamic cloudlet
or to other computing nodes via CHs according to the cen-
tral scheduler decision. Tasks can be executed parallel or
sequentially based on their correlation as shown in Fig. 7,
where nodes I and T indicate initiation and termination of the
application, respectively, and the intermediate nodes indicate
either tasks that can execute remotely or not. For instance, the
tasks in Fig. 7 assigned to nearby computing nodes according
to certain execution paths, such as %1 ()3,)7,)9) assigned to
#1, %2 ()4,)6,)8) assigned to #2 and ()2,)5) assigned to
#3. Based on the execution flow, we partition our task graph
between I and T in terms of communication usage according
to the heaviest execution paths, where it considered a near-
optimal execution strategy and we denoted the communication

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

vii

Fig. 7: Application tasks follow topology including commu-
nication and computation tasks, vertex weight refers to task
workload and the edge weight refers to the ratio of the output
data to the input data size

cost by ��8, 9 where:

��8, 9 =
8=8, 9

�D?;>03
+

>DC8, 9

�3>F=;>03
(11)

Besides that, we represented the task offloading decision on
two major cases as illustrated in Fig. 8.

Case 1: #1 offload tasks to #2 and #3. #2 execute the
offloaded task by #1 and send output results to #3 to presume
its task execution. Distributed tasks among the cluster nodes
should be done in an efficient manner to reduce the com-
munication overhead, energy consumption, and delay. Hence,
we proposed a greedy task partition algorithm to seek near-
optimal allocation to achieve efficient offloading according to
available computing resources.

Case 2: #1 offload tasks to #2 and waiting for the result
back to resume its execution, where it is not practical to rely
on one edge server on dense networks due to the enormous
resulting requests from edge devices. When the edge server
is unable to handle the assigned tasks, it will offload part of
to its nearby edge servers where smart selection methods are
required. which is out of the scope of the current work and
can be considered as future work.

Since the application may include dependent and indepen-
dent tasks, we focused on the dependent communication tasks
(shared tasks) that add burden to the network, due to their high
interaction cost. We minimized interaction between nodes by
mapping tasks with high interactions on the same computing
node as illustrated in Fig. 7. This, reduces the communication
cost, task execution time, and extend the network lifetime.
Consequently, we defined the application overall execution
time)0?? within the computing cluster as follows:

Time0?? = Time=8 + Time 48 (12)

Fig. 8: Tasks Dependency Cases

Where)8<4=
8
indicate the tasks execution time at nearby

devices and C8<44
8
indicate the execution time at the edge

nodes.

Time=8,#3 ∈& 9 =
|& 9 |∑
8=1

"∑
9=1
�

(
X
D,3
8, 9

)
+*�

(
X
D,3
8, 9

)
+,

(
X
D,3
8, 9

)
(13)

#3 denotes the selected node to perform the assigned task
X
D,3
8, 9

of node #D , Where �
(
X
D,3
8, 9

)
represent computing time of

task j at node i,*�
(
X
D,3
8, 9

)
represent data upload and download

time and ,
(
X
D,3
8, 9

)
denote waiting data receiving time.

More formally, our proposed task scheduling allocation
algorithm can formally be defined as the succeeding integer
linear programming problem (ILP) 0-1 where decision variable
38, 9 addressed properly. 38, 9 = 1 indicates that the 9Cℎ task is
assigned to the remote node i.

minimize
|& |∑
8=1

|" |∑
9=1
��8 9 · 38, 9 (14)

subject to
|" |∑
9=1

38, 9)8, 9 ≤ �)8 (g), 8 = 1, 2 . . . , |" | (15)

|& |∑
8=1

38, 92
(
XD8

)
≤ 28 (g), 8 = 1, 2 . . . , |& | (16)

38, 9 = 0, 1, 8 = 1, . . . |& |; 9 = 1, . . . |" | (17)

5) Centralized Task Scheduling Algorithm Description
Note that the response time of nearby computing nodes to

deliver the output task result could vary depending on the
computing capacity, connection time, and network condition.
For that, we defined an electing strategy to evaluate the
computing nodes’ eligibility within each mobile cloudlet.
1) Qualified Nodes Election Process Node mobility could

be a barrier during the offloading process leading to a
task failure. Therefore, we set low task computation and
communication time barriers to deal with task execution
time respecting to task deadline within the cluster (8
nodes. Moreover, we maintained appropriate energy 4 9
to support the task completion time. Note that the

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

viii

Algorithm 1: Greedy Task Graph Partition Algorithm
Input: Cluster node #B , Originator #8 , Task graph

�C=< +" , � >, +" = Application Tasks, E = Dependency
links

Output: Mapped task among our DCC Edge Tasks (i.e. Cloudlet
Server), Unoffloadable Tasks (i.e. locally), Shared Tasks
(i.e. Neighbor Devices)

1 initialization
2 Create a queue PrimaryTasks.
3 PrimaryTasks := (successors in AGD.
4 S := Represent DCC Asc nodes in cluster (according their

resources.
5 for each Node i of (: do
6 if �)8 (C) > �

(
X
D,3
8

)
and �)8 (C) > �

(
X
D,3
8

)
then

7 if Node i have enough Energy then
8 Add Node i to Eligible Node List LENi.

9 for each Node j of !�#: do
10 while NoFinsih do
11 �8 := Max(Path) if �DAA4=C) 0B:! =) 4A<8=4) 0B:

0=3 �DAA4=C) 0B: =>=�G?;>A43 then
12 if � 9 > � (X8) then
13 Assign) 0B:8 To #>34 9
14) 0B:8 is Explored
15 else
16 i=k Last Explored Node
17 Break

18 else
19 if �DAA4=C) 0B: ==) 4A<8=4) 0B: $A

�DAA4=C) 0B: 8B�G?;>A43 then
20 Remove Ti From PrimaryTasks Queue.
21 UPDATE(PrimaryTasks).
22 CurrentTask:= PrimaryTasks1.
23 if � 9 > � (X8) then
24 Assign) 0B:8 To #>34 9 .

25 if PrimaryTasks isEmpty then
26 Finish := True

communication time (CT) that can be obtained using a
prediction model [29] should be reasonable to meet the
task needs. While exchange time (ET) defined to ensure
the successful data transfer between the originator and
the neighbor nodes. Hence, the selection process must
satisfy the following condition:
�)9 > �

(
X
D,3
8, 9

)
, �)9 > �

(
X
D,3
8, 9

)
and 4 9 > �

2) Task Graph Partition
After determining the eligible nodes sets Q within the
mobile cloudlets, we introduce a greedy task graph
offloading partition algorithm for acyclic task graph
�C . The algorithm takes a �C as input, which includes
task nodes represented as vertices and communication
link between nodes represented as edges. Note that the
communication cost between tasks at the same node is
negligible.
• Tasks Classification:
First, we distinguished tasks into different sets
of unoffloadable tasks (Local), computation tasks
(heavy), and communication tasks(shared). Unof-
floadable tasks execute on the device due to its
special features while the remaining tasks execute
remotely. Apart from this, unoffloadable and com-

Fig. 9: Task Flow Partition Result

putation tasks, each one can be regarded as one
vertex where their communication and computation
costs aggregated separately. Let �CB represent the
resulting graph after merging the initial graph.

• Classification of Eligible Nodes:
Once the eligible nodes have been identified, they
are sorted from the highest to the lowest weight
according to their computational weight.

• Edge Cut Partition:
This step aims to assign the �CB resulting graph
tasks within the selected eligible nodes, such as
communication cost minimized.

IV. Experimental and Simulations Evaluation

To evaluate our proposed partitioning algorithm, we con-
ducted our experiment scenario over a large number of sim-
ulations, where we assign to each task node a computation
weight and a communication weight for each edge. We have
implemented the GTGP algorithm using Matlab that can serve
as proof of its feasibility and utility. The algorithm assigns
the target tasks to the mobile devices with the highest relative
computing capacity, respecting devices connection, and energy
constraints. For instance, Fig. 9 shows the partition result
in which the start task and the terminate task methods are
assumed unoffloadable tasks. Tasks D, G, I, J assigned to
device 1, tasks C, F assigned to device 2, and tasks B, E,
H, K assigned to device 3. Mobile devices 1 and 3 receive
the output resulting data from the device 2 to presume the
execution of their tasks with the following edge costs (E-H
and E-I).
A. Performance of GTPG Algorithm
We compared the overall communication cost of mobile

devices with random and uniform offloading strategies to our
proposed GTGP algorithm under different numbers of tasks
i.e. “different application size”. As shown in the Fig. 10.
Compared to the other two algorithms, the GTGP algorithm
shown the lowest communication cost. Because GTGP works
on exploiting the device computing resources completely and

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

ix

10 20 30 40 50 60 70 80 90 100
Tasks Count

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
C
o
m

m
u
n
ic
a
ti
o
n

C
o
st

Greedy Task Graph Partition
Uniform O0oading
Random O0oading

Fig. 10: Communication Cost During The Offloading Process

Fig. 11: Energy Average consumption during the offloading
process

executes the correlated tasks with the high interaction cost
in the same device. While random offloading algorithm runs
separately in different devices, which may add more delay due
to the resulting transmission. We observed that the uniform
offloading strategy with the small-scale application can give
similar performance to our algorithm. This relates to the task
graph bifurcation where the probability to flow the same
execution path is high at the start-up phase, while as the
application size scales the communication cost increases and
diverges from each other.
1) Computation and Communication Energy consumption

In Fig. 11, we compared the performance of our proposed
algorithm during the offloading process to the random and
uniform algorithms overall different shared tasks i.e (tasks with
low workload and high interaction) in terms of the following-
Axes. The first axe represents, energy consumption resulting
due to the data transmission i.e. (task interactions), and the
second axe represents, energy consumption for task execution.
Random and uniform offloading strategies usually work on
assigning tasks separately to the different available computing

50 100 150 200 250 300 350 400 450 500
Tasks Count

10

20

30

40

50

60

70

80

90

N
et

w
or

k
A

ve
ra

ge
 U

til
iz

at
io

n
(%

)

Cloud Layer
Cloudlet Layer
Device Layer

Fig. 12: Average Network Utilization

nodes which can be practical for independent tasks while
increasing the communication costs for dependent tasks. Our
GTGP algorithm shows low energy consumption considering
the data transmission overall the two prior mentioned strategies
while showing high energy consumption for the computing
process. We note that the gain energy brought by decreasing
the communication cost can affect inversely the energy devices
due to the task computing burden on the device. However, the
energy consumption resulting due to the the computing can be
acceptable in case the communication cost is very high.
B. Performance of DCC Architecture
The application tasks could be executed in a cooperative

manner where multiple heterogeneous devices can share their
resources within the proposed computing system DCC. In this
subsection, we show the advantages of DCC layers separately
and completely on the function of the network usage, task
failed ratio, and task completion delay.
1) Network Usage
We executed our application with DCC layers as shown in

Fig. 12 where the application consists of high computation
and communication tasks, high computation tasks should be
offloaded to the cloudlet or cloud nodes which is clear due
to the surrounded device resource limitation, and the high
communication tasks should be offloaded to the nearby de-
vices, according to the scheduler decision. Fig. 12 shows the
offloading process of communication tasks where it shows
that relying only on the cloud consumes more bandwidth
comparing to the cloudlet and devices while offloading tasks
to the nearby nodes showing the lowest consumed bandwidth.
2) Task Failure Ratio
In our experiment, we adopted a clustering schema to form

a dynamic mobile cloudlet where each mobile within the
cloudlet able to receive and send tasks. When a mobile node
intends to offload its computing tasks, it starts by offloading
tasks to eligible nodes within the same cloudlet and then
offloading outside the mobile cloudlet according to the task
scheduler. Note that the offloading outside the mobile cloudlet
is affected through the cloudlet server to avoid extra routing

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

x

100 200 300 400 500 600 700 800 900 1000
Tasks Count

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F

ai
le

d
T

as
ks

 (
%

)
WithMobileCloudlet
WithOutMobileCloudlet

Fig. 13: Tasks Failed Due To The Link Instability

cost, which is considered a challenge in a dynamic network.
Fig. 13 shows the task failure ratio overall offloaded tasks,
wherewith 100 tasks, the task failure ratio is 0.2 with mobile
cloudlet, and 0.45 without mobile cloudlet. We observe that
offloading tasks failed ratio via mobile cloudlet is the lowest
for various application scales and this relies on the reliability
of the connection given by the mobile cloudlet to the cloudlet
server.
3) Task Completion Delay

Fig. 14 shown the average delay of our proposed schedul-
ing algorithm overall different architectures (Cloud-Only,
CloudAndCloudlet, DCC). In the beginning of the offloading
process, the average completion delay is almost identical for
the different architectures, then it starts increases significantly,
wherewith the Cloud-Only the delay increases to 9.5 seconds
with 400 devices and to 900s with 1000 devices. And for
the CloudAndCloudlet the delay changes from 9.5s with 400
devices to 400.3s with 1000 devices. Hence, this difference
relies on the computing nodes’ location. Although offloading
computing with CloudAndCloudlet shown acceptable results
comparing to the cloud but it’s still limited in dense net-
works. However, when the cloud and cloudlet nodes unable
to fulfill the users offloading requests, integrating the devices
layer within the cloud and cloudlet layers showed efficient
results, where the delay achieve (2s,5s) with (400,500) devices
respectively and 400s with 1000 devices.
C. Experiment Evaluation

To explore the feasibility of our experiment, we have built a
software-defined as proof of concept for our DCC architecture
(SDDCC). We chose a facial recognition system as a scenario
for our experiment due to its intensive computing tasks. It
consists of smart mobile phones and a cloudlet server. Smart
mobile phones act as an IP mobile camera. The cloudlet
server works for automatic face recognition or verification of
an individual from a digital image or a video frame from a
live streaming source. It can be used primarily in crowded
areas such as airports, stadiums, and army areas. Using a face
recognition application could be a good demonstration to show
the experiment results due to its task diversity, where consists

100 200 300 400 500 600 700 800 900 1000

Devices Count

0

100

200

300

400

500

600

700

800

900

1000

T
a
sk

C
om

p
le
ti
o
n

D
el
ay

Cloud Only
Cloudlet And Cloud
DCC

Fig. 14: Average Task Completion Delay

of different computation and communication tasks such as
capture frames task, face extraction task, face detection task,
extraction face features, matching face, etc.

1) Experiment Setup

We defined a central scheduler within our specified SDN
to determine optimum tasks scheduling, using the input in-
formation provided by the network and edge devices. Based
on the node resources, eligible computing nodes within the
formed mobile clusters are selected to share their resources
which subject to prior mention constraints in the previous
sections. In addition, note that the central scheduler is familiar
with the entire local network where includes device profiles.
Furthermore, in order to evaluate our proposed GTGP algo-
rithm performance, we analyzed a face-recognition application
using application profiler in [32] to select sub computing task,
including dependent and independent tasks. Fig. 15 represents
the task recognition face call graph that describes the appli-
cation process. In the experiment scenario, we implement a
compute-intensive recognition face mobile application using
Opencv Library and NDN using JNI function and determine
its corresponding tasks according to [32] where the application
includes 19 tasks. Moreover, we build central middleware
using JAVA work on monitoring the hull network and device
profiling. We run the computes tasks in the proposed frame-
work, which contains infrastructure-based static cloudlets and
dynamic mobile cloudlets.
2) Experiment Configuration

The application and scenario experiments are based on an
environment depicted in table I. We have fixed the numbers of
mobile devices between 10 and 30 devices. These devices have
a processing frequency of 300MHz-600MHz, respectively and
the targeted application includes 19 tasks. A server node acts
as a cloudlet node located one hop away from the mobile
devices with a computing capacity of 0.5GHz-3GHz and a
quad-core CPU.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

xi

Fig. 15: Application Call Graph

Experiment Parameter Settings
Parameter Value
SMD 30
Edge Node 1
Edge Server Capacity 0.5GHz - 3GHz
Edge Devices Capacity 300MHz - 600MHz
Energy Device Status 50% - 100%
Network Type Random
Task Number 19
Bandwidth 1Mbs-100 Mbs
Video size 250 MB

TABLE I: Experiment Parameter Setting

3) Application Response Time
To get an accurate estimation of the application response

time, we run the face recognition application tasks within
various architectures, locally at the device or remotely with
CloudAndCloudlet and the DCC. It can be seen clearly that in
Fig. 16 the response execution time with CloudAndCloudlet
and the DCC is significantly reduced compared to the local
device execution. It takes more than 15 minutes to process
and detect 200 frames of streaming on mobile devices, while
it takes less than 1 minute with the other remote offloading
strategies. We observe that at the beginning, the remote
offloading strategies have identical response time and then
it starts increasing with video size scaling, We note that
the offloading over DCC showed the lowest response time
compared to CloudAndCloudlet and Cloudlet only, confirming
that the offloading through DCC can improve the system
performance.
4) Energy Consumption Within Different Offloading Strategies

Fig. 17 shows the results of the average communication
energy consumed within the different computing clusters using
random, uniform offloading strategies, and the GTGP offload-
ing algorithm. In order to measure the communication energy,
we select random devices within clusters 1 and 2 which have
insufficient energy. Each cluster consisting of 10 devices at
most. The results showed that the energy usage of the GTPG
offloading algorithm is the lowest compared to the two other
strategies. This relies on the task assignment strategy during
the offloading process. By using random/uniform offloading
strategies, tasks can be assigned equitably/inequitably to the

Fig. 16: Response Time Within Different Architecture

Fig. 17: Cluster Energy Usage

surrounded computing nodes which consume more resources.
By our GTGP algorithm, the assignment process among com-
puting clusters is affected based on devices’ capacities and
their locations which can reduce energy consumption. We note
that the energy consumed by cluster 1 is higher than the other
two clusters. Since the randomly selected nodes tend to offload
their computing tasks within the same cluster node than to the
other nodes in other clusters.

V. Conclusion

In this paper, we have evaluated the task and resource
allocation problem of multiple tasks for a single application
within the DCC environment taking into account the task
dependencies and user mobility, and we have introduced a
greedy task graph partition GTGP offloading algorithm, where
the tasks scheduling process is assisted according to the device
computing capabilities with following a greedy optimization
approach to minimize the tasks communication cost. Over
trace-driven and randomized simulations, the results show
that our GTGP algorithm outperforms effectively over random
and uniform offloading strategies. In addition, we build a

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

xii

framework works as an SDN based on managing the offloading
process in a centralized manner. Moreover, we implement a
compute-intensive mobile application to operate in DCC archi-
tecture, which mostly includes infrastructure-based cloudlets,
mobile cloudlets, and cloud. The experiment results also show
that the performance of our proposed mechanism is excellent.

References

[1] P. Srivastava and R. Khan, “A Review Paper on Cloud Computing,”
International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 8, no. 6, p. 17, jun 2018.

[2] H. Bangui, S. Rakrak, S. Raghay, and B. Buhnova, “Moving to the edge-
cloud-of-things: Recent advances and future research directions,” p. 17,
jun 2018.

[3] Y. He, J. Ren, G. Yu, S. Member, Y. Cai, and S. Member, “D2D
Communications Meet Mobile Edge Computing for Enhanced Compu-
tation Capacity in Cellular Networks,” IEEE Transactions on Wireless
Communications, vol. 18, no. 3, pp. 1750–1763, 2019.

[4] D. Kovachev and R. Klamma, “Framework for Computation Offload-
ing in Mobile Cloud Computing,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 1, no. 7, p. 6, 2012.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[6] F. Messaoudi, A. Ksentini, and P. Bertin, “On Using Edge Computing
for Computation Offloading in Mobile Network,” in 2017 IEEE Global
Communications Conference, GLOBECOM 2017 - Proceedings, vol.
2018-Janua. edge2020: Institute of Electrical and Electronics Engineers
Inc., jul 2017, pp. 1–7.

[7] Q. Tang, L. Chang, K. Yang, K. Wang, J. Wang, and P. K. Sharma,
“Task number maximization offloading strategy seamlessly adapted to
UAV scenario,” Computer Communications, vol. 151, pp. 19–30, feb
2020.

[8] H. Yuan, J. Bi, M. Zhou, J. Zhang, and W. Zhang, “Profit-
Maximized Task Offloading with Simulated-annealing-based Migrating
Birds Optimization in Hybrid Cloud-Edge Systems,” in 2020
IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, oct 2020, pp. 1218–1223. [Online]. Available:
https://ieeexplore.ieee.org/document/9283467/

[9] Y.-h. Kao, S. Member, and B. Krishnamachari, “Hermes : Latency
Optimal Task Assignment for Resource-constrained Mobile Computing,”
no. December 2018, 2017.

[10] “Femto Clouds: Leveraging Mobile Devices to Provide Cloud Service
at the Edge - IEEE Conference Publication.”

[11] S. Sundar and B. Liang, “Communication Augmented Latest Possible
Scheduling for cloud computing with delay constraint and task depen-
dency,” Proceedings - IEEE INFOCOM, vol. 2016-Septe, pp. 1009–
1014, 2016.

[12] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in EuroSys’11 -
Proceedings of the EuroSys 2011 Conference, 2011, pp. 301–314.

[13] X. Wei, S. Wang, A. Zhou, J. Xu, S. Su, S. Kumar, and F. Yang,
“MVR: An Architecture for Computation Offloading in Mobile Edge
Computing,” Proceedings - 2017 IEEE 1st International Conference on
Edge Computing, EDGE 2017, pp. 232–235, 2017.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings - IEEE INFOCOM, 2012, pp.
945–953.

[15] C. Wang and Z. Li, “Parametric analysis for adaptive computation
offloading,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), vol. 1.
Association for Computing Machinery, 2004, pp. 119–130.

[16] O. Castro-Orgaz, W. H. Hager, O. Castro-Orgaz, and W. H. Hager,
“Computation of,” Shallow Water Hydraulics, pp. 183–200, 2019.

[17] Y. Inag, M. Demirci, and S. Ozemir, “Implementation of an SDN Based
IoT Network Model for Efficient Transmission of Sensor Data,” UBMK
2019 - Proceedings, 4th International Conference on Computer Science
and Engineering, pp. 682–687, 2019.

[18] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing,” in 2014
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2014, pp. 352–357.

[19] M. A. H. Abdel-Jabbar, I. Kacem, and S. Martin, “Unrelated parallel
machines with precedence constraints: Application to cloud computing,”
in 2014 IEEE 3rd International Conference on Cloud Networking,
CloudNet 2014. Institute of Electrical and Electronics Engineers Inc.,
nov 2014, pp. 438–442.

[20] Y. H. Kao and B. Krishnamachari, “Optimizing mobile computational
offloading with delay constraints,” in 2014 IEEE Global Communi-
cations Conference, GLOBECOM 2014. Institute of Electrical and
Electronics Engineers Inc., feb 2014, pp. 2289–2294.

[21] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, 2010, pp. 49–62.

[22] D. Mazza, D. Tarchi, and G. E. Corazza, “A cluster based computation
offloading technique for mobile cloud computing in smart cities,” in
2016 IEEE International Conference on Communications, ICC 2016.
IEEE, jul 2016.

[23] L. Xiang, B. Li, and B. Li, “Coalition formation towards energy-
efficient collaborative mobile computing,” Proceedings - International
Conference on Computer Communications and Networks, ICCCN, vol.
2015-Octob, 2015.

[24] N. Shi, X. Liu, and Y. Guan, “Research on k-means clustering algorithm:
An improved k-means clustering algorithm,” in 3rd International Sym-
posium on Intelligent Information Technology and Security Informatics,
IITSI 2010, 2010, pp. 63–67.

[25] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
Offloading for Service Workflow in Mobile Cloud Computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp.
3317–3329, dec 2015.

[26] Y. Lan, X. Wang, C. Wang, D. Wang, and Q. Li, “Collaborative com-
putation offloading and resource allocation in cache-aided hierarchical
edge-cloud systems,” Electronics, vol. 8, no. 12, p. 1430, 2019.

[27] Y. He, J. Ren, G. Yu, and Y. Cai, “D2D communications meet mobile
edge computing for enhanced computation capacity in cellular net-
works,” IEEE Transactions on Wireless Communications, vol. 18, no. 3,
pp. 1750–1763, 2019.

[28] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal offloading
partitioning algorithm in mobile cloud computing,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 9826 LNCS, pp.
311–328, 2016.

[29] L. Luo and B. E. John, “Predicting task execution time on handheld
devices using the keystroke-level model,” in Conference on Human
Factors in Computing Systems - Proceedings, 2005, pp. 1605–1608.

[30] A. Khanna, A. Kero, and D. Kumar, “Mobile cloud computing architec-
ture for computation offloading,” Proceedings on 2016 2nd International
Conference on Next Generation Computing Technologies, NGCT 2016,
no. October, pp. 639–643, 2017.

[31] ——, “Mobile Cloud Computing Architecture for Computation Offload-
ing,” 2016 2nd International Conference on Next Generation Computing
Technologies (NGCT), no. October, pp. 639–643, 2016.

[32] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: An
efficient code partition algorithm for mobile cloud computing,” 2012
1st IEEE International Conference on Cloud Networking, CLOUDNET
2012 - Proceedings, pp. 80–86, 2012.

Naouri AbdeNacer received his B.S. degree in com-
puter science from the University of Djelfa Algeria,
in 2011, and the M.Sc. degree in networking and
distributed systems from the University of Laghouat
Algeria, Laghouat, Algeria, in 2016. He is currently
pursuing the Ph.D. degree with the University of Sci-
ence and Technology Beĳing China, Beĳing, China.
His current research interests include Cloud comput-
ing,Smart communication,machine learning,Internet
of vehicles and Internet of Things.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

https://ieeexplore.ieee.org/document/9283467/

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3064225, IEEE Internet of
Things Journal

xiii

HANGXING WU received his B.S. degree in au-
tomation control from Chang’an University, China in
2001, and his Ph. D. degree in control science and
technology from Northwestern Polytechnical Univer-
sity in 2008. He is now an associate professor in
School of Computer and Communication Engineer-
ing, University of Science and Technology, Beĳing,
China. His current research interests include flow
control and congestion control, high speed networks,
data center networks and Mobile Edge Computation.

Nouri Nabil Abdelkader Received his engineer’s
degree in computer sciences from the university
of Laghouat, Algeria, in 2003 and his magister
degree in networking and distributed systems from
the university of Bejaia, Algeria, in 2007. His cur-
rent research interests include Wireless Networking
Design, Internet of Things, Performance Evaluation,
Fog Computing, Optimization.

Sahraoui Dhelim Received his B.S. in Computer
Science from the University of Djelfa, Algeria, in
2012 and his Master degree in Networking and Dis-
tributed Systems from the University of Laghouat,
Algeria, in 2014. And PhD in Computer Science
and Technology from University of Science and
Technology Beĳing, China, in 2020. His current
research interests include Social Computing, Per-
sonality Computing, User Modeling, Interest Min-
ing, Recommendation Systems and Intelligent Trans-
portation Systems. Interest Mining,

Huansheng Ning Received his B.S. degree from
Anhui University in 1996 and his Ph.D. degree from
Beihang University in 2001. Now, he is a professor
and vice director of the School of Computer and
Communication Engineering, University of Science
and Technology Beĳing, China. His current re-
search focuses on the Internet of Things and general
cyberspace. He is the founder and chair of the
Cyberspace and Cybermatics International Science
and Technology Cooperation Base. He has presided
many research projects including Natural Science

Foundation of China, National High Technology Research and Development
Program of China (863 Project). He has published more than 150 jour-
nal/conference papers, and authored 5 books. He serves as area editor for
IEEE Internet of Things Journal (2020-2022), and editor role for some other
journals. He is a visiting chair professor of Ulster University, UK.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on May 21,2021 at 07:57:09 UTC from IEEE Xplore. Restrictions apply.

